BACKGROUND

° **Stroke** and other neurological conditions affect the population of infants in percentages that cannot be considered marginal.

° **Preterm infants** are the infants at highest risk for **neurological damage**.

of life and to **reinforce therapy** by "CareToy": a portable low cost smart system telemonitored.

AIM

Expected Results

1° The CareToy system, obtained by integrating the developed modules, will be able to extract **fundamental parameters** during infants' **rehabilitation therapy** in a reliable and accurate way, elaborate these multi-parametric data and to communicate with remote rehabilitation centres.

2° Validate the system as a tool for early intervention of preterm infants with brain injuries such as perinatal stroke.

3° Plans for exploitation: specific ideas and purposive plans for industrialization will emerge.

Project Information

Τ

h

e

0

n s

0

t

u

m

Project coordinator: Prof. Paolo Dario - paolo.dario@sssup.it Starting date: November 1st, 2011 Project Duration: 36 months Project cost: 3.000.076,00 € EC contribution: 2.292.972,00 €

A MODULAR SMART SYSTEM FOR INFANTS' REHABILITATION AT HOME BASED ON MECHATRONIC TOYS

FP7-ICT-2011-7 **@Health** European ICT-2011.5.1

SENSORIZED TOYS

One of the main aims of the CareToy H is to promote manipulation capabilities, thus we designed a kit of sensorized toys in order to induce an effective grasping in a "spontaneous" way while measuring different parameters (e.g. pressure, force, movements).

FEEDBACK WALLS

The sensorized mat is surrounded around its two lateral sides - by feedback walls. Each wall has a size of about 90 cm x 40 cm and can provide **audio-visual stimuli** thus they are attractive and stimulating for the infants.

SENSORIZED MAT

Module

The sensorized mat has the aim to detect the **posture** and the movement of the infants during the rehabilitation session.

CareToy H is composed by:

° kit of sensorized toys

° interactive walls

° sensorized mat module

The proposed PLATFORMS **Telerehabilitation Station** i

n

t

е

r 0

e

On

Remotely communication with the rehabilitation staff for monitoring and assessing the rehabilitation techniques

> Hospital or Rehabilitation centres

CareToy C - 2 units For clinical assessment

The fundamental building modules of the CareToy C are:

- ° vision module (composed by five screens for visual stimulation) commercial eye tracker
- 'infant-seat ° kit of sensorized toys

° arched gym ° cameras ° wearable sensors telerehabilitation module Telerehabilitation Module o^{ζ} CareTov Infant's

interface parent

CareToy system at infant's home for

the intervention process CareToy H - 6 units

The frontal wall is provided by a

screen that can show moving pictures (animations) with and without sounds that switch on and off.

SCREEN WALL

BELT WALL

The belt wall completes the structure with an adjustable pillow in order to allow sitting posture. This soft pillow is equipped with a **switch** and a belt for allowing the infant to sit by laying his/her back against the wall.

ARCHED GYM

The arched gym is a structure that can be placed in the CareToy H where toys can be hanged in the three points of interest. Twelve different **orange lights** are embedded into the arch that progressively switch on and off from one side to the middle and/or to the other side.

WEARABLE SENSORS

In order to get some informations about the arms and trunk movements ST Microelectronics (CareToy partner) developed wireless magneto-inertial wearable devices designed as bracelets and chest strap.