

Serval

Serval, the last in a line of robot iterations, is meant to serve as a quadruped for agile movement. We use the previously researched mechanisms, control structures and gained knowledge in the electronics development to build a combined and hopefully higher performing robot. Serval consists of and active 3-DOF spine (combining advantages from Lynx and Cheetah-Cub-S), leg units with adduction/abduction mechanism and a scaled ASLP-version of Cheetah-Cub-AL. All motors (Dynamixel MX64R and MX28R) are combined with in-series elastics to protectthe rather sensitive gearboxes from harm in different load scenarios. The robot is equipped only with a minimal sensor set, consisting of a low-cost, mediumgrade IMU. Collaborations, started close to the end of this thesis will provide contact and GRF sensing with capacitive sensors as well as a sensitive skin for physical guidance. Control is realized through inverse kinematics for the legs, (for now) offsets in the spine and an underlying CPG-network for pattern generation. Reflexes, like in Oncilla, were not yet implemented, but are ongoing and future work.

Key Features

- IMU, (sensitive skin, GRF-sensors (in implementaion))
- Inverse kinematics control with in-series elastics
- Standard Servo-motors
- On-board power supply
- Possibility of up to 300g (distributed) payload

Possible Applications

- Researching loss of limb strategies
- Researching different feet or legs designs
- Exploring different neural networks inspired by animals
- Platform for sensor carrier, such as camera
- · Animal gait exploration, versatility
- Exploring in narrow spaces

Access information

Location Route Cantonale, 1015 Lausanne, Switzerland	Corresponding infrastructure	École Polytechnique Fédérale de Lausanne BioRobotics Lab
	Location	,
Unit of access Working day	Unit of access	Working day

Technical specifications

RC servo motor	Dynamixel MX64R /MX28R
dhip-shoulder	0.378m
dshoulder-shoulder	0.211m
Ihip, standing height	0.228m
Mactuators+electr, sum	2.167
Mrobot	3.56 kg
Active degrees of freedom	15
Gait type	Various, main trot
Body lengths per second	2.11
Froude number FR (v^2/G/lhip)	0.27
Maximum speed, vmax	0.8 m/s
Control board	Odroid XU4
Power supply, tethered, battery	12V (3S Lipo)

Additional information

Publication under Review, website after that

Videos: https://go.epfl.ch/ExperimentsServal

3DPDF: https://go.epfl.ch/3DPDFServal